题目链接
题意
f[0] = 1,f[1] = 2
f[k] = f[i] + f[j] (0<=i,j<==k-1)
求当n = f[k] 时,输出前k项 (k最小时)
解题思路
典型的IDA*算法,K从1开始枚举,当k可行时,结束搜索.
很容易发现f[k]是递增的,所以当搜索深度为step时,f[step] = f[1…step-1] + f[step-1],这样就很快地会搜索出解.
AC代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
| #include<vector> #include<algorithm> #include<cstdio> #include<iostream> #include<set> #include<cstring> #include<functional> #include<map> #include<cmath> #include<string> #include<queue> using namespace std; typedef long long ll; typedef pair<int,int> pii; typedef pair<int,pii> PII; const int maxn = 1e6+5; int sta[maxn];
bool idastar(int n,int step,int top) { for(int i=0;i<step;i++){ int k = sta[i]+ sta[step-1]; if(k==n){ for(int i=0;i<step;i++){ cout << sta[i]; cout << “ “; } cout << k << endl; return true; } if(step < top){ sta[step] = k; bool ok = idastar(n,step+1,top); if(ok)return true; } } return false; }
int main(int argc, char const *argv[]) { int n = 0; while(cin >> n,n){ int top = 0; if(n==1){ cout << “1” << endl; continue; }else if(n==2){ cout << “1 2” << endl; continue; } sta[0] = 1; sta[1] = 2; while(++top){ if(idastar(n,2,top))break; } } return 0; }
|